Math 246C Lecture 14 Notes

Daniel Raban

May 1, 2019

1 Uniformization Case 2 and Green’s Functions Away From
a Disc

1.1 Uniformization, Case 2 (cont.)

Last time, we were finishing our proof of the Uniformization theorem.

Theorem 1.1 (Uniformization, Case 2). Let X be a simply connected Riemann surface
for which Green’s function does not exist. If X is compact, then there is a holomorphic
bijection X — C. If X is not compact, there is a holomorphic bijection X — C.

Proof. If Gy, 4, is a dipole Green’s function, then there is a ¢ € Hol(X, (C) such that
lo(y)| = e Crre2®W) | p(x1) = 0, and p(29) = oo (a simple pole). We only need to show
that ¢ is injective on X. Let xp € X \ {z1,22}. The dipole Green’s function G, 4,(y)
exists, then there is a ¢ € Hol(X,C) such that |po(y)| = e F=022®) for y € X. Consider
the function

fly) = 2W) = e(zo).

eo(y)
which is holomorphic away from xg,z2. The singularities at xg, z2 are removable, so f €
Hol(X).
Now

sup <00 = [f(y)| < eFroml¥)(emFrml) 4 0,
yeX\(D1UD2)
so f is bounded away from xg, 1, 2. Since f is holomorphic at these 3 points, f is bounded
on all of X. Say |f(y)| < M. Let v € F;, be a Perron amily for G,. Then

fly) — 1)

Wi s yeX\{zm}

v(y) + log

by the Lindeléf maximum principle. Since sup,cr, v(y) = oo for all y, we get f(y) = f(21)
for all y € X.



We get that

e(y) — (@) _ e(z1) —¢(xo) _  ¢(z0) ~
woly)  wolrr)  wo(z) # 10,00}

In particular, ¢ # ¢(z¢) unless po(y) = 0. This is when y = xg. Thus, ¢ is injective on
X \ {x1,x2} and hence on X. O
1.2 Existence of a Green’s function away from a disc

It now remains to prove the existence of a dipole Green’s function. We need the following
fact.

Theorem 1.2. Let X¢ be a Riemann surface, and let Dy € Xo be a parametric disc. Set
X = Xo\ Dg. Then for all z € X, a Green’s function G,(y) on X exists.

Given this construction, we can produce a dipole Green’s function by taking the differ-
ence of Green’s functions G, and G, for x1,z2 ¢ Dy. Then we can shrink the size of the
disc to try to get a dipole Green’s function on all of Xj.

Proof. Let x € X, and let S C X be a parametric disc D C X with z € D = {|z| < 1} and
z(x) =0. When 0 <r < 1,let rD={y € D:|z(y)| <r}. Letve F,, aPerron family on
X. Then

v(y) +log|z(y)| < swpV,  y€eDy#u
by the Lindel6f maximum principle. In particular,

sup v(y) + log(r) < supw.
y€d(rD) oD

Idea: We want to solve the Dirichlet problem! on X \ rD = Xq \ (Do U rD):
Au=0on X \rD, ulprpy = 1, ulgp, = 0.

We will use Perron’s method. Let F be the collection of us which are subharmonic on
X\ 7D, u =0 far away, and such that

limsupu(y) <1 V¢ € 0(rD),
y—¢

limsup u(y) <0 Vo € 0Dy.

Yy—a

"We have not formally defined the Laplacian on a Riemann surface, but this should at least motivate
the rest of the proof.



For all u € F, u < 1, so by the Perron theorem,

w(y) = supv(y)
veF

is harmonic on X \ rD.

Any point £ € 9Dy U 9(rD) is a regular point for the Dirichlet problem in the sense
that there is a local barrier at £: Recall that h is a local barrier at £ € 92 (where Q C C
is open and connected) if

1. h is defined and subharmonic on 2 NV for some neighborhood B of &.
2. h(z) <0in QNV
3. For z€ Q h(z) - 0as z — &

If 0 € C', then any ¢ € 09 is a regular point. By Perron’s theorem, it follows that
w = sup v extends continuously to 9(rD)UdDy. So we have a harmonic w on X \ D such
that w|g-py = 1 and w|sp, = 0. We have that 0 < w <1, and by the maximum principle,

O<w<lonX\rD.
Let us go back to v € Fy:

sup v(y) + log(r) < supw.
yed(rD) oD

Consider the subharmonic function on X \ 7D

v— | sup v | w.
o(rD)

By the maximum principle, this function is < 0. So

v < (Sup U> w,
oD

supv < | sup v | supw.
oD a(rD) | oD
——

=1-6

which gives us that

Combining this with our previous bound on v gives
6 sup < sup v —supuw,
a(rD)  9(rD) oD

SO

d sup +log(r) < 0.
a(rD)



We get that

1 1
sup < =log () , Yv € F,
o(rD) r

Thus, sup,cr v # 00, and G, exists. O

Remark 1.1. The function w is called the harmonic measure of 9(rD) in the region
X\ rD.
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